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OVERVIEW

e IMOS thermal module objectives
e IMOS thermal model

e IMOS internal solver

e Future work



Objectives

e Try to please everybody (accomplish integrated modeling goals + retain standard
thermal modeling procedures)... Work in Progress

e Develop Matlab based routines for defining/solving thermal models
— Compatibility with structural model (automatic generation of conduction
conductors) |
— Compatibility with thermal modeling methods and programs

— Flexibility to allow user to create/modify elements of model (e.g. add radiator
conductors, one-way nodes, etc.)

— Solve steady state and transient problems

e Not a current objective to develop radiation conductors (although ability to generate
input files for TRASYS from f.e. mesh is a goal)



Status

e Automatic conversion of beam and plate elements from restricted finite element
geometry

e User defined thermal nodes and conductors can be added

° Temperatﬂre varying material conductance properties can be supplied by tabular
input

e Steady state solver tested (includes radiation, temperature varying linear conductors)



Modeling — The IMOS Plate Element

e The IMOS plate element is a 2-D triangdlar element with no interior angle greater
than 90°

e Why the restrictions?
— Produces positive conduction elements that:

e retain network characteristics, compatibility with standard methods

e lead to “diagonally dominant” systems (functional iteration methods
need this condition!)

— Conductances can be generated from integral volume methods, i.e.. each node
is associated with a volume:

e finite difference and finite element interpretation
e leaves room for adding radiation conductors



Integral Volume Approach

Consider heat equation

V- (kVu) = f,

u = temperature.
k = thermal conductivity,
f = heat generation

For region V with smooth boundary oV

/V V- (kVu)dv = /V fdv.

Integral volume approach derived from Green’s theorem:

/V-(kVu)dv:/ kVu - ndo
1% Jov

n = outward normal vector
do = surface differential.



Example: Application to a finite difference approximation on uniform rectangular mesh

Control Volume tn Uniform Mesh

Approximate Vu - n on east boundary by centered difference
u(E) — u(P)
h 2
Analogous approximations on north, west south boundaries lead to

Vu-n=

/ kVu - ndo ~ ktfu(E) + u(N) + u(W) + u(S) — 4u(P)], t = plate thickness
ov ’

Conductances between P and adjacent points are:

kA
Cprg =Cpn =Cpw =Cpg = 7

where A = th cross—sectional area and | = h (distance between nodes)



Conductances for the Triangular Element

Control Volume Associated with T riangular Element

@, R, and P = midpoints of segments AC, AB, and BC, respectively,
O = intersection point of perpendicular bisectors of AC, AB, and BC
Vo = region bounded by the polygon AQOR.

Vo = control volume assoc. with node A

Conductance Formula:
Cap = ktcot C/2, t = plate thickness

Capacitance Formula:

_ t(|AC|*cot B + |AB|?) cot C

o 3



Plate Element Attributes

e Equivalent to 5—point Laplacian formula on regular mesh

e All conductors are positive when ZC < 90°

e Equivalent to triangular plate element with picewise linear polynomial on irregular
mesh



Steady State Solution Method

e Newton method with linesearch
e Takes advantage of Matlab matrix sparsity routines

e Uses approximation of system Jacobian (exact when there are no
temperature varying materials)

e “Globally” convergent (in principle)



Steady State Solution Method

e Steady State Equation

F(T) + Q=0 F(T) = CT + RD(T)

T= temperature

C= matrix of linear conductors
R= matrix of radiation conductors
D(T)= diag(T4,..., Tx)

()= heat input

e Idea is to minimize |F(T) + Q|
Can show F'(T') + @ = 0 has unique solution with 7' > 0...so iteration

T(n+1) =T(n)+ s(n)d(n);

with
d(n) = —F'(T(n))"'F(T(n)), s(n) = steplength parameter

can be shown to be globally convergent (and ultimately quadratic)



Steady State Solver Example

e 362 node system; 8978 radiation elements, 276 linear conductors
e Firror tolerance set at 1.0e-8: Sum of energy imbalance + temp. change

e Room temperature initial conditions



Convergence of Steady State Algorithm
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Optimization Example

e Objective: control temperature to 310° at certain nodes (tempset) by applying heat
to another set of nodes (heatset) with bounds on heat input

e Model Attributes

— 20 nodes (3 boundary nodes)
— Temperature varying materials
— Radiation conductors




Solution Approach

e Solution approach: Nonlinear least squares problem

T™= desired temperature vector
tempset= set of nodes to be controlled
heatset= set of nodes at which heat is applied

mén |T* — T (tempset)|?
such that

F(T)+Q =0, 0<Q(heatset) <10, Qi) =0,i ¢ heatset

Nonlinear optimization program NPSOL used to obtain solution:
Q*=[1.313 .3622 .3622 1.313],
Topt=[310.2 310.2 310.4 310.4 310.4 310.2. 310.2 308.0]

e Important Note: “Analytical” gradient of objective functional obtained from F'—!



Future Work

e Transient solver (handle arithmetic nodes)
e TRASYS interface (others)
e One way nodes, code modifications (efficiency,...)

e Other stuff???... optimization package, ID package, submodeling, etc.



